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Summary of Presentation

w Objectives/Strategy/Outcome

w Validation of computer model for glass

w Results of cratering analysis

w Analysis and Auburn University/Hypervelocity Impact
Facility (AU/HIF) data in the context of historical data

w Surface displacements

w Conclusions/Recommendations
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Project Objectives
w Review data on hypervelocity impact on glass.

w Develop a computer model for glass suitable for analysis of
impacts at high velocities.

w Match the crater and spall parameters for impacts into glass
from low-energy tests at AU/HIF.

w Blindly predict the crater and spall parameters for impacts
into glass (to be compared to results from high-energy tests at
AU/HIF).

w Damp the calculations to static solutions at late time for
further analysis of the influence of impact on mirror optics.
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Strategy for Impact Analysis
w Develop a context for the impact analysis and testing by

examining data from terrestrial experiments.

w For the fused silica model, include data from experiments at
very high pressures, the first-order phase transformation to
Stishovite, and a strength model that depends on pressure and
strain rate.

w Use coupled smooth particle hydrodynamics (SPH) and
Lagrange representations of objects.

w Vary the spall parameter to match the crater from the impact
test at low-energy.

w Use the same settings for the impact analysis at high energy.

w Run to late time for both low and high energy impacts.
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Outcome
w Obtained new fits to historical data on crater and spall in glass
w Validated the computer model for the glass
w Matched the low-energy impact calculation to historical trends

and to the averaged result of tests at AU/HIF
w Matched the high-energy impact calculation to historical trends

but not to the averaged result of tests at AU/HIF
w Predicted the effect of low-and high-energy impacts on the

shape of the mirror
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Validation of Computer Model for Fused Silica
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The computer model for the fused silica reproduced the
first and second waves observed in impact experiments
by Wackerle (J. Appl. Phys., p.922, March 1962).
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Matching of Crater and Spall, Low-Energy Impact

YS = 56 µ

DS = 614 µ

6F Experiment

Spall

Crater

DC = 109 µ

YC = 96 µ

The calculation (shaded) matched the crater depth (YC) and
diameter (DC) and the spall depth (YS) and diameter (DS).
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AU/HIF Test of Low-Energy Impact in Fused Silica

For this test the particle velocity was 5.6 km/s and its diameter, 57 µ.
The crater and spall were nonsymmetric. The crater and spall dimen-
sions were: YC = 103 µ, DC = 63x90 µ, YS = 51 µ, and DS = 740x780 µ.
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Crater and Spall, High-Energy Impact
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The impact analysis showed a large region of incipient front-surface
spall. Not shown is aft surface spall also predicted by the analysis.



SHOCK TRANSIENTS, INCORPORATED TD02 RVW-10

Crater and Spall Dimensions
Energy Type YC (µ) DC (µ) YS (µ) DS (µ)

Low AU/HIF* 97 91 51 681
Low AUTODYN 96 109 56 614
High AU/HIF* 74 68 34 516
High From Fit 234 243 - 3,356
High AUTODYN 291 318 158 2,768

*Average of three

Definition of Low and High Energy

Energy DP (µ) VP (km/s) KE (erg)
Low 62 6.2 5.38⋅104

High 124 9.9 1.098⋅106
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Glasses and Their Constituents
Constituents

Type
ρ

(gm/cm³) SiO2 TiO2 B2O3 Na2O Al2O3

Quartz 2.65 ~100 - - - -
Fused Silica

(Corning 7940)
2.20 99.9 - - - -

Ultra-Low Expansion
(ULE, Corning 7971)

2.21 92.5 7.5 - - -

Borosilicate
(Pyrex, Corning 7740)

2.23 81 - 13 4 2

Vycor 2.2 94 - 5 1 -
Soda-Lime (Float)* 2.53 74 - - 11 2

*Other constituents: 9% CaO, 3% MgO, & 1% K2O
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Penetration (Crater Depth)
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Penetration Data for Glass from AU/HIF
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The FS data lies higher than the ULE data. The scatter is large.
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Surface Displacements
Low Energy Impact/One-Inch Disk
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The impact affected the glass to a diameter of 20 mm.
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Surface Displacements
High Energy Impact/Three-Inch Disk
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The impact affected the entire disk (note scales).
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Conclusions
w Historical glass impact data should guide interpretation of

analysis and test results
w AUTODYN matched cratering and spall data and predicted

late-time surface shapes
w The fused silica penetration data lay above the ULE data
w The scatter in the AU/HIF data was large

Recommendations
w Obtain more data on glass impact at AU/HIF
w For future work:

- Consider an energy-dependent EOS (e.g., Sesame)
- Examine the effect of temperature on cratering and spall


